Abstract

We describe and show results of a novel technique to measure with high precision the positions of photodetectors installed in the upgraded liquid xenon calorimeter of the MEG II experiment. The measurement was done by detecting the signal in individual photo-detectors as the front surface of the calorimeter was scanned in axial (Z) and azimuthal (ϕ) directions with a precisely controlled, thin, collimated beam of X-rays obtained from a 57Co X-ray source. The measurements were made when the calorimeter was cold and operational, under which conditions they could not otherwise be made. This technique is used to check for changes in the photodetector positions due to the effects of cooling and thermal cycling of the support structure and to provide a reference between the positions of the operational photodetectors and alignment markers on the cryostat exterior. The use of an essentially monochromatic X-ray source allowed ancillary measurements of photodetector properties, including pulse shape, relative gain, and variation in response over the photodetector surface. Measurement uncertainties below 0.6 mm in Z and 0.7 mrad in ϕ have been achieved, well within the requirements for the MEG II performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.