Abstract

The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

Highlights

  • As the relationship between humans, computers, and machines grows towards an uninterrupted and ever-closer level, mobile biomedical devices such as bio-sensing textiles will prompt many new ubiquitous mobile applications on a global scale such as 24-h medical monitoring, medical emergency communications, and patient data recording, to name a few

  • Multi-material fibers have the potential to address some of the major challenges in developing sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures

  • The radiation pattern measurements of the Leaky Coaxial Cables (LCXs) were obtained in an anechoic chamber using a wide-band Log periodic directional antenna Aaronia HyperLOG-7060 from 700 MHz to 6 GHz along with a tunable signal generator on the transmission side, while the LCXs acted as the far-field receiver

Read more

Summary

Introduction

As the relationship between humans, computers, and machines grows towards an uninterrupted and ever-closer level, mobile biomedical devices such as bio-sensing textiles will prompt many new ubiquitous mobile applications on a global scale such as 24-h medical monitoring, medical emergency communications, and patient data recording, to name a few. Clothing and other wearable garments are increasingly set to become platforms for arrays of biomedical sensors, transducers and microprocessors that may continuously monitor health while interacting cost-effectively with the user, service provider, and the cloud. Such garments are often called smart textiles

Smart Textiles in Biomedical Applications
Textile Antennas and Multi-Material Fiber Approach
Leaky Coaxial Cable Antenna
Dipole Fiber Antenna
Fabrication
Textile Integration
LCX Fiber Antenna
Gain Measurements
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call