Abstract

AbstractAg(In1-xGax)Se2 thin films have been deposited on Mo-coated soda-lime glass substrates by the three-stage process using a molecular beam epitaxy (MBE) system. We found a remarkable decrease in the substrate temperature during the 2nd stage in which the film composition changes to a Ag excess. A single phase chalcopyrite AIGS thin film with a slightly Ag poor composition was obtained by using the temperature monitoring composition method. The cell performance of the AIGS thin film solar cell was found to strongly depend on the Ga/(In+Ga) and Ag/(In+Ga) atomic ratios.A high efficiency wide-gap (Eg=1.7eV) Ag(In0.2Ga0.8)Se2 thin film solar cell with a total-area efficiency of 9.3% (10.2% active area efficiency), Voc = 949mV, Jsc = 17.0 mA/cm2, FF = 0.577, and total area = 0.42 cm2 was achieved. The junction formation mechanism of AIGS devices is discussed based on electron beam induced current (EBIC) and scanning capacitance microscopy (SCM) analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.