Abstract

For many diseases, treatment is more effective in the early stage of a disease; hence detection of the early signs of a disease is highly significant. Biomechanical motion can be such an early indicator. This paper proposes a novel method for monitoring biomechanical motion based on electromagnetic sensing techniques. The proposed method has the advantages of being non-invasive, easy to perform, of low cost, and highly effective. Theoretical models are set up to model the sensor responses and wearable sensor systems are designed. Experiments are performed to monitor various biomechanical movements, including eye blinking frequency, finger/wrist bending level and frequency. From experiments, both the fast blinking behavior with an average frequency of ~1.1 Hz and the slow blinking behavior with an average frequency of 0.4 Hz can be monitored; various finger-bending status are identified, such as the fast finger-bending with an average frequency of ~1.5 Hz and the slow finger-bending with an average frequency of ~1/6 Hz. Both simulations and measurement results indicate that the proposed electromagnetic sensing method can be used for biomechanical movement detection and the system has the advantages of being easy to put on / take off, and without the need for direct contact between sensors and human body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call