Abstract

Background: Autosomal recessive primary microcephaly-2 (MCPH2) is a rare genetic disorder with clinical and genetic heterogeneity. This study aimed to perform high-throughput whole-exome sequencing (WES) to facilitate the diagnosis of the genetic variants responsible for MCPH2 and the comorbidities. Materials and Methods: The WES was performed for a 3-year-old boy with primary microcephaly-2 and homocystinuria-megaloblastic anemia in a consanguineous family. Sequencing and variant calling was conducted by standard bioinformatics tools. Filtering was performed to prioritize novel variants. Finally, the effect of variants on the protein structure and function was assessed using web prediction tools. Results: Using WES, two novel homozygous variants and three novel homozygous variants were identified in the WDR62 and MTR genes as the causes of MCPH2 and homocystinuria-megaloblastic anemia in the affected child, respectively. These frameshift insertion variants are classified as pathogenic and affect the structure and feature of the WDR62 and MTR proteins by changing amino acid sequence and causing nonsense-mediated RNA decay (NMD). Conclusion: Magnetic resonance imaging (MRI) supported polymicrogyria and impaired cerebral cortical development in the affected child. WDR62 as a causative gene plays an essential role in cerebral cortical development, and its pathogenic disease-causing variants are considered as causing factors for MCPH2. Homocystinuria-megaloblastic anemia was a comorbidity associated with microcephaly in this patient, and its variants were confirmed by WES. Overall, performing WES is a necessary and accurate way to rapidly identify the exact causative genetic variants in MCPH2 and the homocystinuria-megaloblastic anemia and manage the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call