Abstract

This paper develops novel waveguide filters consisting of frequency-selective surfaces (FSSs) in order to realize both the drastic size reduction and multiple attenuation poles in stopbands at both sides of passband. The FSS provides not only a passband but also attenuation-pole frequencies in stopbands since the FSS has both the aperture-element and the patch-element behaviors. In the present design method, the shape of each FSS is designed by a genetic algorithm so that the resonant curve of FSS can be fitted to that obtained from an equivalent-circuit approach. By using such FSSs and quarter-wavelength waveguides, a bandpass filter with six attenuation poles like an elliptic-function filter has been constructed. Furthermore, a technique of the size reduction by controlling adequately the resonant response of each FSS is presented. In this filter, the FSSs are closely located at the interval of the length much shorter than a quarter wavelength. It is shown from the design example that the half longitudinal length of the former example can be obtained, keeping both the passband response and attenuation poles in stopbands. The effectiveness of the waveguide filters with FSSs is validated by good agreement between the calculated and the measured results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.