Abstract

A novel water soluble five coordinate oxovanadium(IV) complex, [VO(C16H15N4O8S)HSO4] incorporating cefuroxime, a cephalosporin group of antibiotic have been prepared from an interaction of vanadyl sulfate and cefuroxime in aqueous solution. The compound was characterized by Fourier transform infrared spectroscopy (FTIR), CHN microanalyses, ultraviolet–visible spectroscopy (UV–Vis), fast atom bombardment (FAB) mass spectrometry and thermogravimetric analysis (TGA). Density Functional Theory (DFT) computation using Gaussian 09 program at B3LYP level revealed a distorted square pyramidal energy optimized geometry for the vanadyl(IV) complex. The molecular docking studies show that the interaction between the vanadium complex and protein receptor, clathrin is dominated by hydrophobic forces. The experimental 1H nuclear magnetic resonance (NMR) features of the analogous Zn(II) complex matched well with the theoretically computed values further affirming the distorted square pyramidal geometry for the vanadyl(IV) complex. Cyclic voltammetry revealed a metal centered single-electron oxidation-reduction response for VO(IV)/VO(V) couple. The antioxidant activity of the vanadium(IV)-complex vis-à-vis the antibiotic has been assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. The vanadium complex showed comparatively better radical scavenging ability compared to the antibiotic cefuroxime. The antimicrobial activity of the compound has been assayed for five different microbial strains using minimum inhibitory concentration (MIC) method. Immunomodulatory studies carried out using phagocytosis index, myeloperoxidase release and cytokine assay indicated the vanadium(IV)-complex to be immunosuppressant. The cytotoxicity of the compound was evaluated by MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) reduction assay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call