Abstract

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children. Up to a quarter of ALL patients relapse and face poor prognosis. To identify new compound leads, we conducted a phenotypic screen using terrestrial natural product (NP) fractions against immortalized ALL cellular models.We identified vitexin, a flavonoid, as a promising hit with biological activity (EC50 = 30 μM) in pre-B cell ALL models with no toxicity against normal human tissue (BJ cells) at the tested concentrations. To develop more potent compounds against ALL and elucidate its potential mode of action, a vitexin-inspired compound library was synthesized. Thus, we developed an improved and scalable protocol for the direct synthesis of 4-quinolone core heterocycles containing an N-sulfonamide using a one-pot condensation reaction protocol. The newly generated compounds represent a novel molecular scaffold against ALL as exemplified by compounds 13 and 15, which demonstrated EC50 values in the low micromolar range (0.3–10 μM) with little to no toxicity in normal cellular models. Computational studies support the hypothesis that these compounds are potential CDK inhibitors. The compounds induced apoptosis, caused cell arrest at G0/G1 and G2/M, and induced ROS in cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call