Abstract

BackgroundArcobacter faecis and A. lanthieri are two newly classified species of genus Arcobacter. The prevalence and distribution of virulence, antibiotic resistance and toxin (VAT) genes in these species are required to assess their potential pathogenic health impacts to humans and animals. This study (i) developed species- and gene-specific primer pairs for the detection of six virulence, two antibiotic resistance, and three toxin genes in two target species; (ii) optimized eight single-tube multiplex and three monoplex PCR protocols using the newly developed species- and gene-specific primers; and (iii) conducted specificity and sensitivity evaluations as well as validation of eleven mono- and multiplex PCR assays by testing A. faecis (n= 29) and A. lanthieri (n= 10) strains isolated from various fecal and agricultural water sources to determine the prevalence and distribution of VAT genes and assess the degree of pathogenicity within the two species.ResultsDetection of all ten and eleven target VAT genes, and expression of cytolethal distending toxin (cdtA, cdtB and cdtC) genes in A. faecis and A. lanthieri reference strains with high frequency in field isolates suggest that they are potentially pathogenic strains. These findings indicate that these two species can pose a health risk to humans and animals.ConclusionsThe study results show that the developed mono- and multiplex PCR (mPCR) assays are simple, rapid, reliable and sensitive for the simultaneous assessment of the potential pathogenicity and antibiotic resistance profiling of tet(O) and tet(W) genes in these two newly discovered species. Also, these assays can be useful in diagnostic and analytical laboratories to determine the pathotypes and assessment of the virulence and toxin factors associated to human and animal infections.

Highlights

  • The genus Arcobacter was proposed in 1991 by Vandamme et al [1], separating it from genus Campylobacter

  • Antibiotic resistance and toxin genes were rapidly detected in field isolates

  • Specificity and optimization of species- and gene-specific primers and protocols in monoplex PCR assays Initially, the specificity of 21 VAT gene primers and optimization of PCR protocols for A. faecis and A. lanthieri were tested with their corresponding reference

Read more

Summary

Introduction

The genus Arcobacter was proposed in 1991 by Vandamme et al [1], separating it from genus Campylobacter. The Arcobacter spp., A. butzleri, A. cryaerophilus, A. skirrowii, and A. cibarius, are of interest to research groups because of their prevalence in bovine, porcine, poultry and shellfish [5, 6] These species have been considered as emerging food- and waterborne zoonotic pathogens [7]. This study (i) developed species- and gene-specific primer pairs for the detection of six virulence, two antibiotic resistance, and three toxin genes in two target species; (ii) optimized eight single-tube multiplex and three monoplex PCR protocols using the newly developed speciesand gene-specific primers; and (iii) conducted specificity and sensitivity evaluations as well as validation of eleven mono- and multiplex PCR assays by testing A. faecis (n= 29) and A. lanthieri (n= 10) strains isolated from various fecal and agricultural water sources to determine the prevalence and distribution of VAT genes and assess the degree of pathogenicity within the two species

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call