Abstract
BackgroundAnaplasma spp. are tick-borne Gram-negative obligate intracellular bacteria that infect humans and a wide range of animals. Anaplasma capra has emerged as a human pathogen; however, little is known about the occurrence and genetic identity of this agent in wildlife. The present study aimed to determine the infection rate and genetic profile of this pathogen in wild animals in the Republic of Korea.MethodsA total of 253 blood samples [198 from Korean water deer (Hydropotes inermis argyropus), 53 from raccoon dogs (Nyctereutes procyonoides) and one sample each from a leopard cat (Prionailurus bengalensis) and a roe deer (Capreolus pygargus)] were collected at Chungbuk Wildlife Center during the period 2015–2018. Genomic DNA was extracted from the samples and screened for presence of Anaplasma species by PCR/sequence analysis of 429 bp of the 16S rRNA gene marker. Anaplasma capra-positive isolates were genetically profiled by amplification of a longer fragment of 16S rRNA (rrs) as well as partial sequences of citrate synthase (gltA), heat-shock protein (groEL), major surface protein 2 (msp2) and major surface protein 4 (msp4). Generated sequences of each gene marker were aligned with homologous sequences in the database and phylogenetically analyzed.ResultsAnaplasma capra was detected in blood samples derived from Korean water deer, whereas samples from other animal species were negative. The overall infection rate in tested samples was 13.8% (35/253) and in the water deer the rate was 17.8% (35/198), distributed along the study period from 2015 to 2018. Genetic profiling and a phylogenetic analysis based on analyzed gene markers revealed the occurrence of two distinct strains, clustered in a single clade with counterpart sequences of A. capra in the database.ConclusionsAnaplasma capra infection were detected in Korean water deer in the Republic of Korea, providing insight into the role of wildlife as a potential reservoir for animal and human anaplasmosis. However, further work is needed in order to evaluate the role of Korean water deer as a host/reservoir host of A. capra.
Highlights
Anaplasma spp. are tick-borne Gram-negative obligate intracellular bacteria that infect humans and a wide range of animals
Anaplasma capra-positive isolates were genetically profiled by the amplification of a longer fragment of 16S rRNA gene as well as partial sequences of citrate synthase, heat-shock protein, major surface protein 2 and major surface protein 4 genes as described previously (Table 1)
Molecular and phylogenetic analyses indicated to occurrence of two genetically distinct strains [named Cheongju (23 isolates) and Chungbuk (12 isolates)] of this pathogen. Sequences obtained from both strains were similar to those derived from A. capra from goats, Fig. 3 Maximum-likelihood phylogenetic trees of Anaplasma species based on partial sequences of heat-shock protein (groEL) gene
Summary
Anaplasma spp. are tick-borne Gram-negative obligate intracellular bacteria that infect humans and a wide range of animals. The cosmopolitan genus Anaplasma includes six species of Gram-negative obligate intracellular bacteria that are transmitted by ticks to a wide range of animals, including humans [1,2,3,4,5], resulting in considerable economic losses in the livestock industry and serious public health concerns [6, 7]. The provisional name Anaplasma capra was assigned after its initial characterization in goats (Capra aegagrus hircus) in China [12] Later, it was isolated from sheep, goats and cattle in different geographical regions [15,16,17,18,19] as well as from various tick species Infection of A. capra was reported in six wild animals in China including three takins (Budorcas taxicolor), two Reeves’s muntjacs (Muntiacus reevesi) and one forest musk deer (Moschus berezovskii) [24]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.