Abstract

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive metabolic disease. Patients present with metabolic decompensation, muscle weakness, respiratory failure, and cardiomyopathy. Late-onset MADD is primarily caused by mutations in the ETFDH gene. Here, we report a patient who has been diagnosed with Down syndrome after birth following karyotype analysis and simultaneously carrying compound heterozygous variants of ETFDH (c.3G > C (p. M1?); c.725C > T (p. T242I), which is novel). Further molecular analyses revealed that the novel c.725C > T (p. T242I) mutation enhances the degradation of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) via the ubiquitin proteasome pathway. Five ubiquitin E3 ligases (STUB1, RNF40, UBE3C, CUL3, and CUL1) and one ubiquitin modification site (Cystein, C101) of the ETF-QO were reported in this study. Our study not only expanded the pathogenic variant spectrum of ETFDH gene but also proved that the c.725C > T (p. T242I) will promote protein degradation through ubiquitin proteasome pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call