Abstract

The manipulation and regulation of valley characteristics have aroused widespread interest in emerging information fields and fundamental research. Realizing valley polarization is one crucial issue for spintronic and valleytronic applications, the concepts of a half-valley metal (HVM) and ferrovalley (FV) materials have been put forward. Then, to separate electron and hole carriers, a fresh concept of a quasi-HVM (QHVM) has been proposed, in which only one type of carrier is valley polarized for electron and hole carriers. Based on first-principles calculations, we demonstrate that the Janus monolayer VSiGeP4 has QHVM character. To well regulate the QHVM state, strain engineering is utilized to adjust the electronic and valley traits of monolayer VSiGeP4. In the discussed strain range, monolayer VSiGeP4 always favors the ferromagnetic ground state and out-of-plane magnetization, which ensures the appearance of spontaneous valley polarization. It is found that the QHVM state can be induced in different electronic correlations (U), and the strain can effectively tune the valley, magnetic, and electronic features to maintain the QHVM state under various U values. Our work opens up a new research idea in the design of multifunctional spintronic and valleytronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call