Abstract

The field of genetically encoded fluorescent probes is developing rapidly. New chromophore structures were characterized in proteins of green fluorescent protein (GFP) family. A number of red fluorescent sensors, for example, for pH, Ca(2+) and H2O2, were engineered for multiparameter imaging. Progress in development of microscopy hardware and software together with specially designed FPs pushed superresolution fluorescence microscopy towards fast live-cell imaging. Deeper understanding of FPs structure and photophysics led to further development of imaging techniques. In addition to commonly used GFP-like proteins, unrelated types of FPs on the base of flavin-binding domains, bilirubin-binding domains or biliverdin-binding domains were designed. Their distinct biochemical and photophysical properties opened previously unexplored niches of FP uses such as labeling under anaerobic conditions, deep tissue imaging and even patients' blood analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call