Abstract
The ongoing advanced space exploration requires the novel energy sources that can generate power for extreme duration without need of refill. The long duration betavoltaic devices are presented using conjugated polymer with scintillators. The Monte Carlo simulations are used to study the interaction of electron beam with two different scintillators, Cerium doped Yttrium Aluminum Garnet (Ce:YAG) and Thallium doped Cesium Iodide (CsI:Tl). The catholuminescence profiles from simulation showed that CsI:Tl is more-efficient to generate photons when hit by electron beam compared to Ce:YAG. The semiconductive conjugated polymer device stack of ITO/PEDOT:PSS/P3HT:ICBA/Al are then fabricated and tested with Ce:YAG and CsI:Tl scintillators under different electron beam energies. The electrical current is successfully extracted from these betavoltaic devices when illuminated with electron beams. As expected, the betavoltaic devices with CsI:Tl scintillator performed better compared with Ce:YAG. The maximum power conversion efficiency (PCE) of 0.24% is obtained at 10 kV electron beam with CsI:Tl, while PCE in device with Ce:YAG is 0.16%. The short circuit current in devices with CsI:Tl is about 57%, greater than in devices with Ce:YAG. The experimental result showed that output electrical power increased with increase in incident electron beam energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.