Abstract

The marine environment represents a rich source of bio- and geogenically produced organohalogens, including the common pollutant perchloroethene (PCE). However, diversity and function of marine chloroethene-dechlorinating microorganisms are largely unknown. Here, we have studied the activity and composition of a tidal flat sediment bacterial and archaeal community from the North Sea exposed to low concentrations of PCE. After 2 weeks of incubation, PCE was rapidly dechlorinated via trichloroethene to dichloroethene (DCE). Unexpectedly, these microcosms produced 3.5-fold more trans-DCE than cis-DCE. The actively dechlorinating microbial populations were traced by stable isotope probing of rRNA with (13)C-labelled acetate for 4 days. Terminal restriction fragment length polymorphism fingerprinting and clone libraries of isotopically enriched, 'heavy'(13)C-labelled bacterial 16S rRNA revealed the populations potentially involved in reductive dechlorination. Major clone groups belonged to the Proteobacteria (50.0%; 22.4% delta-, 12.1% gamma-, 6.9% alpha-, 6.9% beta- and 1.7% epsilon-subgroup) and Chloroflexi (29.3%). Populations represented by the two dominant terminal restriction fragments were affiliated with the Dehalococcoidetes (subphylum II of the Chloroflexi), and were exclusively detected in the heavy fraction of the PCE-dechlorinating incubation. The phylogenetically novel, larger population, designated Tidal Flat Chloroflexi Cluster, was closely related to the recently discovered PCE-dechlorinating Lahn Cluster bacteria from anoxic river sediment but more distantly related to canonical Dehalococcoides spp. (92-94% sequence identity). The second population was closely related to 'Dehalobium chlorocoercia DF-1'. Both populations appear to be responsible for reductive dechlorination of highly chlorinated ethenes to predominantly trans-DCE in tidal flat sediment incubations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.