Abstract
The uncertainty principle, which offers information about a function and its Fourier transform in the time-frequency plane, is particularly powerful in mathematics, physics and signal processing community. In this paper, based on the fundamental relationship between the quaternion linear canonical transform (QLCT) and quaternion Fourier transform (QFT), we propose two different uncertainty principles for the two-sided QLCT. It is shown that the lower bounds can be obtained on the product of spreads of a quaternion-valued function and its two-sided QLCT from newly derived results. Furthermore, an example is given to verify the consequences. Finally, some possible applications are provided to demonstrate the usefulness of new uncertainty relations in the QLCT domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.