Abstract

A new technique for preparation of an unbreakable solid-phase microextraction (SPME) fiber, using sol-gel technology is developed. Primarily, an ultrathin two-dimensional intermediate film was prepared by hydrolysis of 3-(trimethoxysilyl)-1-propanthiol self-assembled monolayer grafted onto gold, then a stationary phase by electrodeposition of 3-(trimethoxysilyl)propylmethacrylate as a precursor, tetramethyl orthosilicate and polyethylene glycol as a coating polymer was produced. The scanning electron microscopy images revealed that the new fiber exhibits a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The applicability of the prepared fiber coating in conjunction with gas chromatography-mass spectrometry was examined by SPME of polycyclic aromatic hydrocarbons, as model analytes, from aquatic media. An extraction time of 20 min at 50 °C gave maximum peak areas when NaCl, 15% was added to the aqueous samples. Limits of detection were in the range of 0.01-0.02 ng/mL and relative standard deviation values were in the range of 4-16% at 1 ng/mL. The developed method was successfully applied for the analysis of real water samples while the relative recovery percentage was in the range of 102-118%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.