Abstract

We have systematically investigated a family of newly proposed two-dimensional MA2N4 materials (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; A = Si, Ge) using first-principles calculation. We categorize the potential of these materials into three different applications based on accurate simulation of band gap (using Hybrid HSE06 functional) and the associated descriptors. Three candidate materials (MoGe2N4, HfSi2N4, and NbSi2N4) turn out to be extremely promising for three different applications. MoGe2N4 and HfSi2N4 monolayers show strong optical absorption in the visible range, including high transition probability from the valence to conduction band. The GW+BSE calculations confirm a strong excitonic effect in both the systems. With a band gap of 1.42 eV, multilayer MoGe2N4 shows reasonably large simulated efficiency (∼15.40%) and hence can be explored for possible photovoltaic applications. High optical absorption, suitable band gap/edge positions, and the CO2 activation make HfSi2N4 monolayer a promising candidate for photocatalytic CO2 reduction. NbSi2N4, on the other hand, belongs to a new class of spintronic material called a bipolar magnetic semiconductor, recommended for spin-transport-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.