Abstract

Tumor specific cytotoxic T lymphocytes (CTL) recognize antigen via the T-cell receptor (TCR). In addition, recognition requires accessory molecules involved in adhesion and signal transduction. The authors previously have characterized an autologous, Burkitt's lymphoma specific CTL line that uses the gamma-delta TCR to recognize antigen in a nonclassical context. The current study was undertaken to identify novel accessory molecules involved in this unusual TCR-tumor cell interaction. A panel of monoclonal antibodies was generated against a Burkitt's lymphoma cell line and was screened for inhibition of autologous, tumor specific, cytolysis by a gamma-delta CTL line. Proteins identified by these monoclonal antibodies were further characterized by fluorescent-activated cell sorter analysis, Western blot and immunoprecipitation. Three known (CD5, CD43, and CD11a/CD18) and three novel (BAM-1, BAM-2, and BAM-3) cell surface molecules involved in the gamma-delta CTL-Burkitt's lymphoma interaction were identified and characterized. This study identifies and provides a preliminary characterization of three novel Burkitt's lymphoma-associated molecules involved in the gamma-delta CTL-tumor cell interaction and demonstrates that CD5, CD43, and CD11a/CD18 are involved in this interaction. It is likely that other unidentified accessory molecules are also involved in this and other effector cell-tumor interactions. Identification of such molecules may be useful in the design of new immunotherapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call