Abstract
In the real industrial manufacturing process, due to the constantly changing operational loads of equipment, it is difficult to collect data from all load conditions as the source domain signal for fault diagnosis. Therefore, the appearance of unseen load vibration signals in the target domain presents a challenge and research hotspot in fault diagnosis. This paper proposes a triplet loss-based domain generalization network (TL-DGN) and then applies it to an unseen domain bearing fault diagnosis. TL-DGN first utilizes a feature extractor to construct a multi-source domain classification loss. Furthermore, it measures the distance between class data from different domains using triplet loss. The introduced triplet loss can narrow the distance between samples of the same class in the feature space and widen the distance between samples of different classes based on the action of the cross-entropy loss function. It can reduce the dependency of the classification boundary on bearing operational loads, resulting in a more generalized classification model. Finally, two comparative experiments with fault diagnosis models without triplet loss and other classification models demonstrate that the proposed model achieves superior fault diagnosis performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.