Abstract
We report the design, analysis, fabrication, and measurement of a novel microwave triple-band metamaterial absorber that obtains three distinct high absorption peaks. The absorber is constructed of a periodic array of new resonant structure printed on a dielectric material with the thickness of λ/67 at the lowest fundamental resonant frequency. By manipulating the periodic patterned structures, significantly high absorption can be obtained at three specific resonance frequencies. This kind of triple-band absorber is polarization insensitive, and the absorption peaks remain high with large angles of incidence for both transverse electric and transverse magnetic polarizations, which provide more efficient absorptions for non-polarized or oblique incident electromagnetic wave. The experimental results show excellent absorption rates and the characteristic of polarization-insensitive for a wide range of incidence angles in the desired frequencies, which are in good correspondence with the simulated results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.