Abstract

Recently our group has demonstrated that cellular triglyceride (TG) levels play an important role in rotavirus replication. In this study, we further examined the roles of the key enzymes for TG synthesis (lipogenesis) in the replication of rotaviruses by using inhibitors of fatty acid synthase, long chain fatty acid acyl-CoA synthetase (ACSL), and diacylglycerol acyltransferase and acyl-CoA:cholesterol acyltransferase in association with lipid droplets of which TG is a major component. Triacsin C, a natural ACSL inhibitor from Streptomyces aureofaciens, was found to be highly effective against rotavirus replication. Thus, novel triacsin C analogs were synthesized and evaluated for their efficacies against the replication of rotaviruses in cells. Many of the analogs significantly reduced rotavirus replication, and one analog (1e) was highly effective at a nanomolar concentration range (ED50 0.1μM) with a high therapeutic index in cell culture. Our results suggest a crucial role of lipid metabolism in rotavirus replication, and triacsin C and/or its analogs as potential therapeutic options for rotavirus infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.