Abstract

A series of novel solution-processable small-molecule host materials: 2DPF-TCz, 2SBF-TCz, 27DPF-TCz, and 27SBF-TCz comprising a fluorene monomer as the rigid core and tri-carbazole as the periphery have been designed and synthesized, and their optical, electrochemical, and thermal properties have been fully characterized. The host materials exhibit high glass-transition temperatures (231–310 °C) and high triplet energy levels (2.61–2.73 eV). High-quality amorphous thin films can be obtained by spin-coating the host materials from solutions. It is found that the HOMO level of the host materials can be tuned by linking the tri-carbazole unit to the 2,7 positions of the fluorine core, resulting in appropriate HOMO energy levels (−5.36 to −5.23 eV) for improved hole-injection in the device. Solution-processed blue and green electrophosphorescent devices bases on the developed host materials exhibit high efficiencies of 21.2 and 34.8 cd A−1, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call