Abstract

Epigenetic dysregulation is an integral step in the progression of pancreatic neuroendocrine tumors. We hypothesized that tumor suppressor repression by DNA methyltransferase 1 in pancreatic neuroendocrine tumors could be targeted with epigenetic treatment. Resected pancreatic neuroendocrine tumors from 32 patients were stained for DNA methyltransferase 1 and scored. Human (BON1) and murine (STC) pancreatic neuroendocrine tumor cells were treated with DNA methyltransferase 1 inhibitor 5-azacytidine and chemotherapeutic agents 5-fluorouracil and temozolomide. Cell proliferation assay and tumor suppressor gene analysis were performed with qRT-PCR and Clarion S microarray. Tumor measurements were compared in a murine treatment model. High DNA methyltransferase scores were associated with high Ki-67 (6.7% vs 70.6% P < .01), mitotic rate (0.0% vs 31.3%), and grade (20.0% vs 80.4%, P < .01). Treatment with 5-azacytidine and chemotherapy resulted in a reduction of cell proliferation compared to chemotherapy alone in BON1 (77.3% vs 53.1%, P < .001) and STC (73.4% vs 34.2%, P < .001). Treatment with 5-azacytidine and chemotherapy resulted in upregulation of tumor suppressors CDKN1A (7.6 rel. fold, P < .001), BRCA2 (4.3 rel. fold, P < .001), and CDH1 (6.0 rel. fold, P= .026) in BON1 and CDKN1a (14.5 rel. fold, P < .001) and CDH (17.5 rel. fold, P < .001) in STC. In microarray, 5-azacytidine drove global genetic changes in combination treatment. Invivo tumors treated with chemotherapy measured 88.6 ± 19.54 mm3 vs 52.89 ± 10.51 mm3 in those treated with combination therapy (P= .009). Epigenetic dysregulation with DNA methyltransferase 1 is associated with pancreatic neuroendocrine tumors and is a potential targetable strategy. 5-azacytidine and chemotherapy in combination can reduce cell proliferation, upregulate silenced tumor suppressor genes, and decrease invivo tumors in pancreatic neuroendocrine tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.