Abstract

In this paper, we present novel precoding methods for multiuser Rayleigh fading multiple-input–multiple-output (MIMO) systems when channel state information (CSI) is available at the transmitter (CSIT) but not at the receiver (CSIR). Such a scenario is relevant, for example, in time-division duplex (TDD) MIMO communications, where, due to channel reciprocity, CSIT can be directly acquired by sending a training sequence from the receiver to the transmitter(s). We propose three transmit precoding schemes that convert the fading MIMO channel into a fixed-gain additive white Gaussian noise (AWGN) channel while satisfying an average power constraint. We also extend one of the precoding schemes to the multiuser Rayleigh fading multiple-access channel (MAC), broadcast channel (BC), and interference channel (IC). The proposed schemes convert the fading MIMO channel into fixed-gain parallel AWGN channels in all three cases. Hence, they achieve an infinite diversity order, which is in sharp contrast to schemes based on perfect CSIR and no CSIT, which, at best, achieve a finite diversity order. Further, we show that a polynomial diversity order is retained, even in the presence of channel estimation errors at the transmitter. Monte Carlo simulations illustrate the bit error rate (BER) performance obtainable from the proposed precoding scheme compared with existing transmit precoding schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.