Abstract

Stramenopile algae have the potential to become the light-driven photosynthetic biofactories of the future, but the transformation technologies required to reach this goal remain sub-optimal. Nannochloropsis oceanica and Phaeodactylum tricornutum were used as experimental systems for electroporation-mediated transformation. Two transformation approaches were developed; 1) timed transformation of synchronized cells and 2) addition of saponins as transformation adjuvants. Transformation efficiency was increased ~8 times using synchronized N. oceanica cultures transformed in the G2/M phase, in comparison to state-of-the-art methods based on transformation of non-synchronized cells. For P. tricornutum the transformation was up to 5 times more efficient in non-synchronized conditions. N. oceanica and P. tricornutum responded differently upon exposure to different saponin plant extracts. Saponin treatments enhanced P. tricornutum and N. oceanica transformation efficiencies ~2 and ~2.5 times, respectively. Combining cell synchronization and saponin transformation adjuvant treatment, improves transformation efficiency in N. oceanica, results in a >10-fold improvement of the transformation efficiency for N. oceanica. In addition, a protocol for directed ribonucleoprotein (RNP)-mediated genome engineering of DNA constructs with short flanking arms (50 bp) in N. oceanica was established, enabling improved RNP targeted non-homologous end-joining (NHEJ) gene editing. In conclusion, this study expands the toolbox for stramenopile genome engineering, promoting their use as model organisms and sustainable biofactories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.