Abstract

Penicillium oxalicum produces an integrated, extracellular cellulase and xylanase system, strictly regulated by several transcription factors. However, the understanding of the regulatory mechanism of cellulase and xylanase biosynthesis in P. oxalicum is limited, particularly under solid-state fermentation (SSF) conditions. In our study, deletion of a novel gene, cxrD (cellulolytic and xylanolytic regulator D), resulted in 49.3 to 2,230% enhanced production of cellulase and xylanase, except for 75.0% less xylanase at 2 days, compared with the P. oxalicum parental strain, when cultured on solid medium containing wheat bran plus rice straw for 2 to 4 days after transfer from glucose. In addition, the deletion of cxrD delayed conidiospore formation, leading to 45.1 to 81.8% reduced asexual spore production and altered mycelial accumulation to various extents. Comparative transcriptomics and real-time quantitative reverse transcription-PCR found that CXRD dynamically regulated the expression of major cellulase and xylanase genes and conidiation-regulatory gene brlA under SSF. In vitro electrophoretic mobility shift assays demonstrated that CXRD bound to the promoter regions of these genes. The core DNA sequence 5'-CYGTSW-3' was identified to be specifically bound by CXRD. These findings will contribute to understanding the molecular mechanism of negative regulation of fungal cellulase and xylanase biosynthesis under SSF. IMPORTANCE Application of plant cell wall-degrading enzymes (CWDEs) as catalysts in biorefining of lignocellulosic biomass into bioproducts and biofuels reduces both chemical waste production and carbon footprint. The filamentous fungus Penicillium oxalicum can secrete integrated CWDEs, with potential for industrial application. Solid-state fermentation (SSF), simulating the natural habitat of soil fungi, such as P. oxalicum, is used for CWDE production, but a limited understanding of CWDE biosynthesis hampers the improvement of CWDE yields through synthetic biology. Here, we identified a novel transcription factor CXRD, which negatively regulates the biosynthesis of cellulase and xylanase in P. oxalicum under SSF, providing a potential target for genetic engineering to improve CWDE production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.