Abstract

Planning high-angle wells involves diverse areas; one of the most important of these areas is torque and drag (T&D) management. Not only could uncontrolled T&D cause various drilling problems like drill string (D/S) failures, casing wear, stuck pipes, and slow rates of penetration but it could also entirely stop the drilling progress, if torque and/or drag exceed rig or string capabilities. Modeling T&D in advance would alleviate these problems by prediction of friction forces to be encountered and urging the drilling team to take the required measures to mitigate these forces or upgrade the drilling hardware (rig equipment and/or D/S). Modeling T&D is still a complex and time-consuming job to be carried out at the rig site while drilling, so that an accurate and rig-friendly model would be very useful to industry. In this work, a novel and simple model had been developed to predict T&D values while drilling both curve and tangent sections of high-angle wells based on a soft-string concept, in which the D/S is assumed to be a chain lying on the lower side of the well that can transmit torsional forces. Despite the simplicity of the calculations, the model accounts for components of drilling torque that are overlooked in most complex packages. Friction within the top drive system had been considered to predict the torque acting on the D/S only. In addition, the torque applied on the D/S by the viscous drilling fluid was accounted for by reversing the concept of viscometers. The model proved to be practical and reliable for the two-dimensional wellbore and thus is superior in terms of quick field application. The developed model was tested using data from the Western Desert, Egypt. Statistical analysis had been used to assure the accuracy of the proposed model and to assess the effect of different drilling parameters and practices on both T&D. The reliability of the model had been proven with a negligible error for drag calculations and 10% error on average for torque calculations. Also, the effect of distance between successive survey stations on T&D modeling had been proven mathematically. This research narrows the gap between theory and practice by studying the dominant factors and determining the extent of the effect of each of them on wellbore friction forces. In addition, the work sheds light on the best practices concluded from the application of the developed model on field data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call