Abstract

The preparation and structural characterization of a novel Ti-O-Ti bonding complex constructed in the mono-lacunary alpha-Keggin polyoxometalate (POM), are described. The water-soluble, crystalline complex with a formula of K5H2[[{Ti(OH)(ox)}2(micro-O)](alpha-PW11O39)] x 13H2O 1 was prepared in 30.2% (0.60 g scale) yield in a 1 : 3 molar-ratio reaction of the tri-lacunary species of alpha-Keggin POM, Na9[A-PW9O34] x 19H2O, with the titanium(IV) source, K2TiO(ox)2 x 2H2O (H2ox = oxalic acid), in HCl-acidic solution (pH 0.08), and characterized by complete elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solution (31P, 183W, 1H and 13C) NMR spectroscopy and X-ray crystallography. The complex was also obtained in 47.6% (0.81 g scale) yield in a 1 : 2 molar-ratio reaction of the mono-lacunary Keggin POM, K7[PW11O39] x 10H2O, with the anionic titanium(IV) complex under acidic conditions. The molecular structure of [[{Ti(OH)(ox)}2(micro-O)](alpha-PW11O39)]7- 1a, was successfully determined. This POM in the solid state is composed of one host (mono-lacunary site) and two guests (two octahedral Ti groups), in contrast to most titanium (IV)-substituted POMs consisting of one host and one guest. On the other hand, the 31P NMR measurements revealed that in aqueous solution this POM was present under a dissociation equilibrium which depends upon both temperature and pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call