Abstract

The field of thyroid hormone signaling has grown more complex in recent years. In particular, it has been suggested that some thyroid hormone derivatives, tentatively named "novel thyroid hormones" or "active thyroid hormone metabolites", may act as independent chemical messengers. They include 3,5-diiodothyronine (T2), 3-iodothyronamine (T1AM), and several iodothyroacetic acids, i.e., 3,5,3',5'-thyroacetic acid (TA4), 3,5,3'-thyroacetic acid (TA3), and 3-thyroacetic acid (TA1). We summarize the present knowledge on these compounds, namely their biosynthetic pathways, endogenous levels, molecular targets, and the functional effects elicited in experimental preparations or intact animals after exogenous administration. Their physiological and pathophysiological role is discussed, and potential therapeutic applications are outlined. The requirements needed to qualify these substances as chemical messengers must still be validated, although promising evidence has been collected. At present, the best candidate to the role of independent chemical messenger appears to be T1AM, and its most interesting effects concern metabolism and brain function. The responses elicited in experimental animals have suggested potential therapeutic applications. TA3 has an established role in thyroid hormone resistance syndromes, and is under investigation in Allen-Herndon-Dudley syndrome. Other potential targets are represented by obesity and dyslipidemia (for T2 and T1AM); dementia and degenerative brain disease (for T1AM and TA1); cancer (for T1AM and TA4). Another intriguing and unexplored question is the potential relevance of these metabolites in the clinical picture of hypothyroidism and in the response to replacement therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.