Abstract

ABSTRACTIn this work, the biomacromolecule, single‐stranded deoxyribonucleic acid (ssDNA) was innovatively incorporated into the polyamide layer to tailor the permeate flux and antifouling performance of the nanofiltration (NF) membranes. With active amines groups, the ssDNA was as the aqueous phase monomers along with piperazine (PIP), and reacted with trimesoyl chloride on polyethersulfone substrate to fabricate thin‐film composite (TFC) NF membranes. The NF membrane prepared under optimal ratio of ssDNA/PIP had a pure water permeability of 75.8 L m−2 h−1 (improved 58% compared to PIP NF membrane) and Na2SO4 rejection of 98.0% at 6.0 bar. The rejections for different inorganic salts were the order: Na2SO4 (98.0%) > MgSO4 (89.2%) > MgCl2 (72.8%) > NaCl (23.0%). Furthermore, the TFC NF membranes showed good antifouling performance in long‐term running with 300 ppm bovine serum albumin and humic acid solution. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 47102.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call