Abstract

Novel injectable thermoreversible hydrogel compositions with semi-interpenetrating network structure were prepared through the addition of sodium alginate (SA) to poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions. The addition of the hydrophilic alginate strongly improved the stability against syneresis of the 15 wt% PNIPAM hydrogels formed at 37°C from less than 15 min in the absence of alginate to more than 7 days in the presence of 4 wt% SA. Besides the SA concentration, the hydrogel stability depended on the molecular weight and polydispersity of PNIPAM, being lower when a high molecular weight fraction was present. The phase transition temperature (Tph) of the PNIPAM aqueous solutions decreased with alginate concentration, while the dynamic viscosity and elastic modulus of the hydrogels increased. By decreasing the PNIPAM molecular weight and polydispersity, the dynamic viscosity and elastic modulus of the PNIPAM–alginate hydrogels formed above Tph diminished, while their viscoelastic behavior changed from predominantly elastic to predominantly viscous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.