Abstract

Human brain is composed of 25% of the cholesterol & any dysfunction in brain cholesterol homeostasis contributes to neurodegenerative disorders such as Parkinson, Alzheimer's, Huntington's disease, etc. A growing literature indicates that alteration in neurotransmission & brain cholesterol metabolism takes place in the early stage of the disease. The current paper summarizes the role of cholesterol & its homeostasis in the pathophysiology of Parkinson's disease. Literature findings suggest the possible role of lipids such as oxysterols, lipoproteins, etc. in Parkinson's disease pathophysiology. Cholesterol performs a diverse role in the brain but any deviation in its levels leads to neurodegeneration. Dysregulation of lipid caused by oxidative stress & inflammation leads to α-synuclein trafficking which contributes to Parkinson's disease progression. Also, α-synuclein by binding to membrane lipid forms lipid-protein complex & results in its aggregation. Different targets such as Phospholipase A2, Stearoyl-CoA desaturase enzyme, proprotein convertase subtilisin/kexin type 9, etc. have been identified as a potential novel approach for Parkinson's disease treatment. In the current review, we have discussed the possible molecular role of cholesterol homeostasis in Parkinson's disease progression. We also identified potential therapeutic targets that need to be evaluated clinically for the development of Parkinson's treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.