Abstract

AbstractThe electrical conductivity of polymeric fiber composites is generally strongly dependent on the constituent conductivities, the fiber filler fraction, the fiber aspect ratio, and on the orientation of the fibers. Even though electrically conductive polymer composites are emerging materials of high scientific and commercial interest, accurate mathematical models for describing such materials are rare. A very promising mathematical model for predicting the electrical conductivity below the electrical percolation threshold, for both isotropic and anisotropic composites, is however recently published by Schubert. The shortcomings of that study are that the model includes so far only one predicted parameter and that it is not sufficiently validated. In the current study, finite element modeling is used to successfully validate the model of Schubert for isotropic fiber composites and to accurately determine the predicted parameter. These theoretical predictions are finally compared with experimental conductivity data for isotropic carbon fiber/poly(methyl methacrylate) (PMMA) composites with fiber filler fractions in the range 0–12 vol% and fiber aspect ratios from 5 to 30. The model forecasts, without any adjustable parameters, are satisfactory close to the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.