Abstract

To search for effective and selective COX-2 inhibitors, four novel series of tetrazole derivatives were designed based on bioisosteric replacement of SO2NH2 in celecoxib with tetrazole ring incorporating different central moieties as chalcone (2a-f), isoxazole (3a-c) or pyrazole (4a-c &5a-c). Target tetrazoles were synthesized and their structures were confirmed by spectroscopic techniques and elemental analyses. All target compounds were more selective for COX-2 isozyme than COX-1 when compared to standard drugs indomethacin and celecoxib. Compounds 3b, 3c, 4b, 4c, 5b and 5c exhibited potent in vitro COX-2 inhibitory activity (IC50 = 0.039–0.065 μM). Trimethoxy derivatives 3c, 4c and 5c acquired superior COX-2 selectivity index values (SI = 297.67–317.95) and were 1.1 fold higher than celecoxib (SI = 282.22). The most active six compounds were evaluated for their in vivo anti-inflammatory activity and serum levels of PGE2, TNF-α and IL-6 in addition to their ulcerogenic liability and histopathological profile. At a dose of 50 mg/Kg, compounds 3c and 5c showed better anti-inflammatory activity (% edema inhibition = 29.209–42.643) than celecoxib (% edema inhibition = 28.694–40.114) at different time intervals and were less ulcerogenic (UI = 0.123 and 0.11 in sequent) than celecoxib (UI = 0.167). Also, they displayed potent inhibitory effect on the production of PGE2 (% inhibition = 81.042 and 82.724 in sequent) greater than celecoxib (% inhibition = 79.666). Compound 5c decreased rat serum concentrations of both TNF-α (% inhibition = 55.349) and IL-6 (% inhibition = 61.561) in a comparable or better activity to celecoxib as reference drug. Finally, docking poses of the most active compounds showed strong binding interactions and effective overall docking energy scores explaining their remarkable COX-2 inhibitory activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.