Abstract

The g-C3N4/Fe3O4/MnWO4 nanocomposites were prepared by a refluxing-calcination procedure. Visible-light-induced photocatalytic experiments showed that the g-C3N4/Fe3O4/MnWO4 (10%) nanocomposite has excellent ability to degrade a range of contaminants including rhodamine B, methylene blue, methyl orange, and fuchsine, which is about 7, 10, 25, and 31 times of the g-C3N4 photocatalyst, respectively. Reactive species trapping experiments revealed that superoxide anion radicals play major role in the photodegradation reaction of rhodamine B (RhB). After the treatment process, the utilized photocatalyst was magnetically recovered and reused with negligible loss in the photocatalytic activity, which is vital in the photocatalytic processes. Finally, a mechanism was proposed for the enhanced interfacial carrier separation and transfer and the improved photocatalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call