Abstract

A ternary micro-electrolysis system consisting of carbon-coated metallic iron with Cu nanoparticles (Fe0/C@Cu0) was synthesized for the degradation of sulfathiazole (STZ). Fe0/C@Cu0 catalysts exhibited excellent reusability and stability owing to the inner tailored Fe0 with persistent activity. The connection between Fe and Cu elements in the Fe0/C-3@Cu0 catalyst prepared with iron citrate as iron source exhibited a tighter contact than the catalysts prepared with FeSO4·7H2O and iron(II) oxalate as iron sources. Especially, unique core-shell structure of Fe0/C-3@Cu0 catalyst is more conducive to promoting the degradation of STZ. A two-stage reaction with rapidly degradation followed by gradual degradation was revealed. The mechanism of STZ degradation could be explained by the synergistic effects of Fe0/C@Cu0. Carbon layer with remarkable conductivity allowed electrons from Fe0 transferred freely to the Cu0. The electron-rich Cu0 releases electrons, facilitating the degradation of STZ. Furthermore, the high potential difference between cathode (C and Cu0) and anode (Fe0) accelerate the corrosion of Fe0. Importantly, Fe0/C@Cu0 catalysts exhibited excellent catalytic performance for sulfathiazole degradation in landfill leachate effluent. Results presented provide a new strategy for treatment of chemical wastes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call