Abstract

Escherichia coli has only a single copy of a gene for tRNA6Leu (Y. Komine et al., J. Mol. Biol. 212:579-598, 1990). The anticodon of this tRNA is CAA (the wobble position C is modified to O2-methylcytidine), and it recognizes the codon UUG. Since UUG is also recognized by tRNA4Leu, which has UAA (the wobble position U is modified to 5-carboxymethylaminomethyl-O2-methyluridine) as its anticodon, tRNA6Leu is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA6Leu with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNA6Leu. These tRNA6Leu-requiring mutants were classified into two groups. The 10 group I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA4Leu restored the growth of group I mutants at 42 degrees C. Replacement of the CUG codon with UUG reduced the efficiency of translation in group I mutants. These results suggest that unmodified tRNA4Leu poorly recognizes the UUG codon at 42 degreesC and that the wild-type tRNA6Leu is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call