Abstract

Bias of ring-laser-gyroscope (RLG) changes with temperature in a nonlinear way. This is an important restraining factor for improving the accuracy of RLG. Considering the limitations of least-squares regression and neural network, we propose a new method of temperature compensation of RLG bias-building function regression model using least-squares support vector machine (LS-SVM). Static and dynamic temperature experiments of RLG bias are carried out to validate the effectiveness of the proposed method. Moreover, the traditional least-squares regression method is compared with the LS-SVM-based method. The results show the maximum error of RLG bias drops by almost two orders of magnitude after static temperature compensation, while bias stability of RLG improves by one order of magnitude after dynamic temperature compensation. Thus, the proposed method reduces the influence of temperature variation on the bias of the RLG effectively and improves the accuracy of the gyro scope considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.