Abstract

In this work, Carbon Nanofiber mates (CNF) were fabricated by carbonization of electrospun non-conducting PolyAcryloNitrile (PAN) and PAN/PolyvinylAlcohol (PVA) nanofiber mates at 1100°C. PAN acts as a carbon source while PVA acts as a scarifying material to create porosity which leads to increase the accessible surface area. Two types of samples have been produced, carbon nanofiber mate (CNF) and Porous carbon nanofiber mate (P-CNF). The samples were first characterized by XRD, FTIR and SEM then examined as novel electrodes for supercapacitor applications. The specific capacitance (SC) results of the CNFs based on electrospun PAN mate and P-CNF based on electrospun PAN/PVA mate precursors, were 170 and 202 Fgm-1 respectively. The porous structure of P-CNF mate not only increased SC but also increased the capacitive retention and cyclic stability at discharging current density three times higher than that applied in case of CNFs. These results confirm that the tailored P-CNFs have potential for lightweight and durable flexible supercapacitor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call