Abstract
The current study involves development of novel tamarind seed gum - alginate complex microspheres for sustained release of dalfampridine by using Central Composite design in combination with response surface methodology. Polymer ratio (A), agitation speed (B) and concentration of CaCl2 (C) were selected as independent variables. Dalfampridine loaded microspheres are prepared by ionotropic gelation technique and were evaluated for responses. The software numerical optimization process, surface and contour plots predicted the level of independent variables A, B and C (2.6, 800.412 rpm and 1.1%w/w respectively), for maximum response of drug entrapment efficiency (86.09%), controlled release of drug at 1 h, 6 h, 12 h (29.84%, 67.92%, 86.42%) and optimized particle size (613.212 μm) respectively. Low magnitude of relative error for the optimized formulation confirms the validation of model. Optimized formulation was characterized for compatibility by Fourier Transform infrared spectroscopy and Differential scanning calorimetry. The drug release data was best fitted by first order and Higuchi square root model with non-Fickian diffusion kinetics. Therefore, such an attempt of fabrication of dalfampridine multi-particulates system by using tamarind seed gum and sodium alginate may be useful in a better way, for sustaining the release of drug over 12 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.