Abstract

Railway communications are essential nowadays enabling passengers to stay connected to entertainment as well as other bandwidth-demanding applications. This is particularly challenging because wireless communication standards are not fully customized to overcome railway environment challenges including high handover frequency, group handover and Quality of Service (QoS) guarantees. In this paper, a novel system architecture for railway wireless communications is proposed. The proposed heterogeneous system utilizes the Parallel Redundancy Protocol (PRP), the 4G Long Term Evolution (LTE) cellular protocol and as well as the IEEE 802.11n (Wi-Fi) wireless protocol. The goal of the proposed system is to quantify the overall system performance through several metrics (such as the data loss ratio, average packets dropped, handover delay and LTE delay) thereby ensuring that the proposed system can meet the required entertainment benchmarks. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban railway environment. Simulation results show that the proposed architecture achieves improved performance for a high-load scenario even with added background traffic as compared to a conventional railway architecture for wireless communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.