Abstract

Many metal sulfides with high theoretical capacities are potential anode materials for lithium-ion batteries. However, the low electronic conductivity and large volume change of metal sulfides during cycling seriously hamper their practical applications. Herein, we report a novel and scalable strategy to synthesize well-dispersed Ni3S2 (∼5nm) inside porous carbon (CMK-3) by using mesoporous silica (SBA-15) as the template. CMK-3 offers not only good electronic conductivity but also mesopores to accommodate the volume variation of Ni3S2, leading to outstanding electrochemical performance of Ni3S2-loaded CMK-3. To show the versatility of this novel method, ZnS-loaded CMK-3 is also prepared. However, most ZnS nanoparticles are formed outside the pores of CMK-3 with regard to high loading amount. It is inferred that the intermediate product Zn would melt and migrate to the outer surface of CMK-3 prior to the formation of ZnS. This novel synthesis method may offer an attractive pathway to metal sulfide-loaded porous carbon with high lithium storage capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.