Abstract
In the present investigation, a novel strategy of continuous microwave assisted flow synthesis (CMFS) has been adopted in comparison to traditional synthesis procedures (sol-gel and chemical precipitation method) for the quick production of TiO2 nanoparticles with very fine particle properties. The X-ray powder diffraction analysis (XRPD) and transmission electron microscopy (TEM) were two techniques used for analysing the properties related to structure and particle morphology of the resultant samples. It was observed that the particles formed by using continuous flow route were less agglomerated, and particle size (~ 6 nm) was smaller in comparison with others obtained using sol-gel (~ 9 nm) and chemical precipitation method (~ 15 nm). X-ray diffraction impressions established the generation of Anatase phase with preferential [101] dimension. Zeta potential computations were taken to inspect the colloidal stability of nanoparticles. Antimicrobial nature of TiO2 nano-samples was analyzed by using various bacterial and fungal strains. The nanostructured TiO2 particles confirmed outstanding uniformity with respect to chemical and structure. This new ceramic substance with strong antimicrobial activity promised magnificent potential in bone tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.