Abstract

We derive nilpotent and absolutely anticommuting (anti-)co-BRST symmetry transformations for the bosonized version of (1+1)-dimensional (2D) vector Schwinger model. These symmetry transformations turn out to be the analog of co-exterior derivative of differential geometry as the total gauge-fixing term remains invariant under it. The exterior derivative is realized in terms of the (anti-)BRST symmetry transformations of the theory whereas the bosonic symmetries find their analog in the Laplacian operator. The algebra obeyed by these symmetry transformations turns out to be exactly same as the algebra obeyed by the de Rham cohomological operators of differential geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.