Abstract

Edible oil is essential for people's daily life but also results in a large amount of oily wastewater simultaneously. Oil-water separation is a practical route that can not only purify wastewater but also recycle valuable edible oil. In this study, the superhydrophobic copper mesh (SCM) was prepared by chemical etching, and a novel oil-water centrifugal device was designed for high-efficiency separation of edible oil wastewater. The kernel is a self-prepared SCM, which has a water contact angle (WCA) of 155.1 ± 1.8° and an oil contact angle (OCA) of 0°. Besides, the separation performance of the SCM for edible oil-water mixtures was studied in this study. The results showed that the SCM exhibited excellent oil/water separation performance, with a separation efficiency of up to 96.7% for sunflower seed oil-water wastewater, 93.3% for corn oil-water wastewater, and 98.3% for peanut oil-water wastewater, respectively. Moreover, the separation efficiency was still over 90% after 18 cycles. A model was established to analyze the oil-water separation mechanism via centrifugation. The oil-water centrifugal separation device has great potential for scale-up applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call