Abstract

Design and synthesis of new carbon allotropes have always been important topics in condensed matter physics and materials science. Here we report a new carbon allotrope, formed from cold-compressed C_{70} peapods, which most likely can be identified with a fully sp^{3}-bonded monoclinic structure, here named V carbon, predicted from our simulation. The simulated x-ray diffraction pattern, near K-edge spectroscopy, and phonon spectrum agree well with our experimental data. Theoretical calculations reveal that V carbon has a Vickers hardness of 90GPa and a bulk modulus ∼400 GPa, which well explains the "ring crack" left on the diamond anvils by the transformed phase in our experiments. The V carbon is thermodynamically stable over a wide pressure range up to 100GPa, suggesting that once V carbon forms, it is stable and can be recovered to ambient conditions. A transition pathway from peapod to V carbon has also been suggested. These findings suggest a new strategy for creating new sp^{3}-hybridized carbon structures by using fullerene@nanotubes carbon precursor containing odd-numbered rings in the structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.