Abstract
Proton exchange membranes (PEM) are critical components of low temperature fuel cells. Most PEMs are made of perfluorinated sulfonic acid polymers such as Nafion®. However, Nafion has a high methanol permeability which is limiting its applicability in direct methanol fuel cells (DMFCs). Here, we report on novel sulfonated pillar[5]arene/Nafion composite membranes with improved properties for application in DMFCs. The properties of the novel composite membranes were investigated under a range of synthesis and operating conditions. Under most conditions, the novel composite membranes exhibited properties far superior than Nafion. For example, the proton conductivity of the sulfonated pillar[5]arene's (10 wt.%)/Nafion composite membrane was 0.145 × 10−4 S cm−1 at 80 °C, while methanol permeability was 2.43 × 10−6 cm2/s. Proton selectivity was increased up to two-fold compared to Nafion-recast membrane. The likely mechanisms for improvements were discussed. Overall, these results indicate that these novel composite membranes are promising for application in DMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.