Abstract

This paper addresses the subcarrier allocation in downlink multicarrier direct-sequence code-division multiple access (MC DS-CDMA) systems, where one subcarrier may be assigned to several users who are then distinguished from each other by their unique direct-sequence spreading codes. We first analyze the advantages and shortcomings of some existing subcarrier-allocation algorithms in the context of the MC DS-CDMA. Then, we generalize the worst subcarrier avoiding (WSA) algorithm to a so-called worst case avoiding (WCA) algorithm, which achieves better performance than the WSA algorithm. Then, the WCA algorithm is further improved to a proposed worst case first (WCF) algorithm. Furthermore, we propose an iterative worst excluding (IWE) algorithm, which can be employed in conjunction with the WSA, WCA, and the WCF algorithms, forming the IWE-WSA, IWE-WCA, and the IWE-WCF subcarrier-allocation algorithms. The complexities of these algorithms are analyzed, showing that they are all low-complexity subcarrier-allocation algorithms. The error performance is investigated and compared, demonstrating that we can now be very close to the optimum performance attained by the high-complexity Hungarian algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call