Abstract

Hydrogels are gaining widespread popularity in the biomedical field due to their extraordinary properties, such as biocompatibility, biodegradability, zero toxicity, easy processing, and similarity to physiological tissue. They have applications in controlled drug release, wound dressing, tissue engineering, and regenerative medicine. Among these applications, hydrogels as a controlled drug delivery system stands out, which releases active substances in precise amounts and at specific times. To explore the latest advances in the design of hydrogels, a literature review of articles published in indexed scientific journals, in Scopus and Science Direct, was carried out. This review aimed to discover and describe the most innovative hydrogel research with applications in the biomedical field; hydrogels synthesized with polymers of different origins were selected, such as; i. Natural (dextran, agarose, chitosan, etc.); ii. Synthetic (polyacrylamide, polyethylene glycol, polyvinyl alcohol, etc.); iii. Composites (interpenetrants, hybrid crosslinkers, nanocomposites, etc.). Comparative analysis revealed that hydrogels with composite materials show the most promise. These composite hydrogels combine the advantages of different polymers or incorporate additional components, offering enhanced properties and functionalities. In summary, hydrogels are versatile biomaterials with immense potential in biomedicine. Their unique properties make them suitable for diverse applications. However, innovative designs and formulations must continue to be explored to further advance the capabilities of hydrogels and expand their biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.